To Guthrie Junior High Students, Parents, \& Guardians,
The $8^{\text {th }}$ grade, Pre-Algebra, curriculum is established by the Oklahoma Academic Standards for Mathematics. Each Proficiency Scale and every activity and assessment we completed this school year can be found as a portion of one or more of the standards. In our planning of the course work for the school year, we organized our time to teach, practice and assess each of those standards in the first three quarter. This leaves the fourth nine-week period for an overall review of the standards.

Therefore, all $8^{\text {th }}$ grade students received instruction required by the State prior to our break. The packet to follow is a basic review of each substandard. Each daily activity is labeled by date and substandard being reviewed. Students will be familiar with the concepts but may need to use the notes attached to the daily activity with the answers for assistance. There is also an $8^{\text {th }}$ Grade Mathematics Formula Sheet that will be a valuable resource throughout. Students are encouraged to continue using the technology of a scientific calculator as we practiced using in our class work.

The following websites are appropriate for aiding in review if needed. Some of these may have been used in FLEX or extra assistance throughout the year. They are not essential to the success but may be helpful.

Quality Free Online Learning Videos

https://mashupmath.com

https://www.mathantics.com

http://mathvids.com

https://www.khanacademy.org

https://www.pbslearningmedia.org

eHowEducation (via youtube)
Dylan Peters EDU (creative videos via youtube)
CrashCourse (via youtube type in math in the search menu)

GJHS 8 ${ }^{\text {th }}$ grade Mathematic Teachers

Adam Dement, Kristin Hooper, Shurlyn Maltz, \& Audrey Rose

Oklahoma State Testing Program $8^{\text {th }}$ Grade Mathematics Formula Sheet

UNIT CONVERSIONS		
1 foot $=12$ inches	1 pound $=16$ ounces	1 cup $=8$ fluid ounces
1 yard $=3$ feet	1 ton $=2000$ pounds	1 pint $=2$ cups
1 mile $=5280$ feet	1 kilogram $=1000$ grams	1 quart $=2$ pints
1 mile $=1760$ yards	1 gallon $=4$ quarts	
1 meter $=100$ centimeters		
1 meter $=1000$ millimeters		

AREA			
Square	$A=s^{2}$	Parallelogram	$A=b h$
Rectangle	$A=l w$	Circle	$A=\pi r^{2}$
Triangle	$A=\frac{1}{2} b h$	Trapezoid	$A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$
CIRCUMFERENCE			
Circle	$C=\pi d$	or $C=2 \pi r$	
VOLUME	$V=B h$	or $V=l w h$	Right Cylinder
Rectangular Prism			
SURFACE AREA			

Rectangular Prism
$S=2 B+P h \quad$ or $S=2 l w+2 l h+2 w h$
Cylinder
$S=2 \pi r h+2 \pi r^{2}$

LINEAR EQUATIONS

Slope-intercept	$y=m x+b$	Direct Variation	$y=k x$
Slope formula	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$		

OTHER

$d=r t$
Pythagorean Theorem $a^{2}+b^{2}=c^{2}$

April 13 ${ }^{\text {th }}$
 NAME
 PA.A.2.1 and 2.2

(1) | x | 2 | 4 | 6 | 8 | 10 |
| :---: | ---: | ---: | ---: | ---: | ---: |
| y | 25 | 35 | 45 | 55 | 65 |

This table represents points that belong to a given line. What is the equation of the line that passes through the points on the table?
F. $y=5 x+15$,
© $y=10 x$
$H y=10 x+5$
J $y=5 x+65$

(2) Which of the following is the slope of the line graphed above?

A -2

B $\frac{3}{2}$
C $-\frac{2}{3}$
D $\frac{2}{3}$

x	y
0	2
-3	0
-6	-2

Using the table above, what is the slope of the line which passes through the points listed?

A -2
B $\frac{2}{3}$
C 2
D $-\frac{2}{3}$
(4) the airplane's speed?

A. 230 mph
B. 460 mph
C. 450 mph
D. 368 mph
or plug points in to
chequetion to solution.
April 13 th
which's PA.A.2.1 and 2.2

- identity fy the slope $\frac{\Delta y}{\Delta x}=\frac{10}{2}=5$
- go backwards using the slope to get to when $x=0$ because the y-value will represent the y-intercept.

(2) Which of the following is the slope of the line graphed above?
* -2

B $\frac{3}{2}$
< $-\frac{2}{3}$
(D) $\frac{2}{3}$

- Remember positive slopes go up to the right
- count between any two points on the line $\frac{\text { rise }}{\text { run }}$

(3)

Using the table above, what is the slope of the line which passes through the points listed?

A -2
(B) $\frac{2}{3}$

C 2
D $-\frac{2}{3}$
(4) The graph shows the hours a plane has been flying and the distance covered. If flying at a constant rate, what is the airplane's speed?

A. 230 mph
(B.) 460 mph
C. 450 mph

$$
\begin{array}{cc}
(3,1380) & (5,2300) \\
x_{1}, y_{1} & x_{2}, y_{2}
\end{array}
$$

D. 368 mph
\qquad
PA.A. 2.3

A

B

Which of
A

c

D

B $\frac{3}{2}$
c $-\frac{2}{3}$
D $\frac{2}{3}$

Which of the following is the slope of the line graphed above?

(3)

A line passes through the points $(3,4)$ and $(-2,5)$. What is the slope of the
line? line?

A 5
B 3
C $-\frac{1}{3}$
D $-\frac{1}{5}$
(9) Which table demonstrates a proportional relationship between x and y ?
A.

x	5	7	9	11
y	16	18	20	22

B.

x	5	7	9	11
y	30	49	72	99

C.

x	5	7	9	11
y	35	49	63	77

(10) Which table demonstrates a proportional relationship between x and v ?
A.

x	2	5	8	11
y	16	40	64	88

B.

x	2	5	8	11
y	14	40	72	110

C.

x	2	5	8	11
y	2	10	24	44

(11) Which table demonstrates a proportional relationship between x and v ?
A.

x	3	6	9	12
y	3	12	27	48

B.

x	3	6	9	12
y	27	54	81	108

C.

x	3	6	9	12
y	24	54	90	132

(12) Which graph demonstrates a proportional relationship between x and y ?
A.
(0, 0)

B.

C.

April 14年
name. K ε y
PA.A.2.3

A
(B)

 line?
$\begin{array}{lc}A_{8}^{5} \\ B_{-\frac{1}{3}}\end{array} \quad \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-4}{-2-3}=\frac{1}{-5}$
(D) $-\frac{1}{5}$
(2)

Which of the following is the slope of the line graphed above?
A -2
B $\frac{3}{2}$
c $-\frac{2}{3}$
(D) $\frac{2}{3}$
(4) What is the slope of the line that passes through the points $(3,6)$ and
$(-1,-2)$?
$\begin{aligned} &(-1,-2) ? \\ & \times 2 y_{2}\end{aligned} \quad x_{1} y_{1}$
$A^{12} 2 y^{2}$
B $\frac{1}{2} \cdot \frac{-2-6}{-1-3}=\frac{-8}{-4}=2$
D -2

Find the slope of the line which passes through the given points.

(6) $(-1,3) ;(2,4)$
(8) $(5,-8) ;(-3,3)$

$$
\frac{3--8}{-3-5}=\frac{-11 / 8}{\frac{\text { Waltz } 2017}{(5,-8) ;(-3,3)}}
$$

(9) Which table demonstrates a proportional relationship between x and y ?
A.

x	5	7	9	11
y	16	18	20	22

B.

x	5	7	9	11
y	30	49	72	99

(C.) | x | 5 | 7 | 9 | 11 |
| :---: | :---: | :---: | :---: | :---: |
| y | 35 | 49 | 63 | 77 |

$$
\text { (10) } \frac{35}{5}=\frac{49}{7}=\frac{63}{9}=\frac{77}{11}=(7
$$

Which table demonstrates a proportional relationship between x and v ?

(A). | x | 2 | 5 | 8 | 11 |
| :---: | :---: | :---: | :---: | :---: |
| y | 16 | 40 | 64 | 88 |$\frac{16}{2}=\frac{40}{5}=\frac{64}{8}=\frac{88}{11}$ the coordinate plane.

B.

x	2	5	8	11
y	14	40	72	110

C.

x	2	5	8	11
y	2	10	24	44

(11) Which table demonstrates a proportional relationship between x and y ?

* | x | 3 | 6 | 9 | 12 |
| :---: | :---: | :---: | :---: | :---: |
| y | 3 | 12 | 27 | 48 |

$$
\begin{aligned}
& \frac{3}{3}+\frac{12}{6} \neq \frac{27}{9}+\frac{48}{12} \\
& \frac{27}{3}=\frac{54}{6}=\frac{81}{9}=\frac{108}{12}
\end{aligned}
$$

(B.) | x | 3 | 6 | 9 | 12 |
| :---: | :---: | :---: | :---: | :---: |
| y | 27 | 54 | 81 | 108 |

C.

x	3	6	9	12
y	24	54	90	132

(12) Which graph demonstrates a proportional relationship between x and y ? which one goes through $(0,0)$?
A.

B.

because theyare all linear. C.

Practice by Objective

8.1.1.c

PArA. 2.4 and 2.5
龟

If the slope of $y=3 x-2$ is changed to -1 , which graph represents the new equation?

A

B

C

D

2
The coordinate plane below shows the graph of the equation $y=-4 x+5$.

Which statement shows the effect of changing the slope of the line $y=-4 x+5$ to 0 ?

A The new line will intersect the x-axis at $(5,0)$ and be parallel to the y-axis.
\mathbb{B} The new line will intersect the y-axis at $(0,0)$ and be parallel to the x-axis.
C The new line will intersect the x-axis at $(0,0)$ and be parallel to the y-axis.
D The new line will intersect the y-axis at $(0,5)$ and be parallel to the x-axis.

Practice lby Objective

8.1.1.c (continued)

Which graph shows the effect of changing the y-intercept in the equation $y=\frac{4}{3} x-5$ to 2 ?

A

B

C

D

4
Which graph represents the equation $y=-2 x+4$ if the y-intercept is changed to 2 ?

A

B

C

D

Practice by Objective
8.1.1.c (continued)

4
Which graph represents the equation $y=-2 x+4$ if the y-intercept is changed to 2 ?

3
Which graph shows the effect of changing the y-intercept in the equation $y=\frac{4}{3} x-5$ to 2 ?
A

B

D

B

C

D

m

$$
\begin{aligned}
& m=-\frac{2}{1} \\
& b=2
\end{aligned}
$$

- where the line crosses the y-axis

April 15 ta

NAME

PAn. 2.4

What happens to the y-intercept of $y=x$ when the function changes to $y=x+4$?

A The y-intercept does not change.
B The y-intercept changes from 0 to 4 .
C The y-intercept changes from 0 to -4 .
D The y-intercept becomes equal to the x-intercept.
(2) Which of the following statements describes the change that is occurring in the y-intercept of the graph of $y=x$ when it changes to $y=x-7$?

A The y-intercept changes from -7 to 0 .
B The y-intercept changes from 0 to -7 .
C The y-intercept changes from 0 to 7 .
D The y-intercept does not change.

What happens to the slope and y-intercept of $y=x$ when the equation changes to $y:=2 x-6$?

A The slope changes to 2 , and the y-intercept changes to 6 .
B The slope changes to -6 , and the y-intercept changes to 2 .
C The slope changes to 2 , and the γ-intercept changes to -6 .
D The slope changes to -6 , and the y-intercept changes to -2 .

$y=m x+b<y$-intercept April 15 th

A The y-intercept does not change. moves up 4 units
(B) The γ-intercept changes from 0 to 4 .

C The y-intercept changes from 0 to -4 .
D The y-intercept becomes equal to the x-intercept.

Which of the following statements describes the change that is occurring in the y-intercept of the graph of $y=x$ when it changes to $y=x-7$?
A The y-intercept changes from -7 to 0 .
B The y-intercept changes from 0 to -7 .
C The y-intercept changes from 0 to 7 .
D The y-intercept does not change.

What happens to the slope and y-intercept of $y=x$ when the equation changes to $y=2 x-6 ?$

A The slope changes to 2 , and the y-intercept changes to 6 .
B The slope changes to -6 , and the γ-intercept changes to 2 .
C The slope changes to 2 , and the y-intercept changes to -6 .
D The slope changes to -6 , and the y-intercept changes to -2 .
(1) Ewaluate: $\frac{\pi}{2}+2$ if $x=-8$
[A] -2
[B] - -6
[C] -3
[D] 6
(2.) Evaluate: $-3 x+7 x$ if $x=2$
[4] -8
[B] 8
[C] -20
[D] 1
(3)

Which equation demonstrates the associative property of addition?
A $2+x=x+2$
B $5+0=5$
C $(3+(-2))+6=3+(-2+6)$
(1) $5(x-9)=5 x-45$
(4) Which property does the following equation represent?

$$
2 \cdot(3-2 y)=6-4 y
$$

A associative
B commutative
C distributive
D identity
substitute in PA.A. 3.1 \& 3.2
the value of x
(1) Evaluate: $\frac{\pi}{2}+2$ if $x=-8$
(4.]) -2
[B] - 6
[C] -3
[D] 6

$$
-\frac{8}{2}+2=-4+2=-2
$$

(2.) Evaluate: $-3 x^{3}+7 x$ if $(=2)$
[A] -8
([B]) 8
[C] -20
[D] 1
(3) Which equation demonstrates the
(4) Which property does the following equation represent?

$$
2 \cdot(3-2 y)=6-4 y
$$

A associative
B commutative
(C) distributive

D identity

Distributive Property

$$
a(b+c)=a b+a c \text { or } 4(x-2)=4 x-8
$$

Associative Property

$$
a+(b+c)=(a+b)+c \text { or } 2+(3+4)=(2+3)+4
$$

Commutative Property

$$
a+b=b+a \quad \text { or } 2+3=3+2 \text { malt z2017 }
$$

$$
\text { April } 16 \text { th }
$$

NAME
PA.A.A. A_{0} I

Solve:
(1.) $-9 x+9+11 x=-4$
[A] $x=\frac{5}{2}$
[B] $x=-\frac{13}{2}$
[C] $x=-\frac{5}{2}$
[D] $x=\frac{13}{2}$
(2) $3 x=2 x+4$
[A] $x=4$
[B] $x=\frac{4}{5}$
[C] $x=-4$
[D] $x=-\frac{4}{5}$
(3) $-8 x+11+10 x+15=4$
[A] $x=11$
[B] $x=15$
[C] $x=-15$
[D] $x=-11$
(4) $6 x-9=5 x-3$
[A] $x=6$
[B] $x=-\frac{12}{11}$
[C] $x=1$
[D] $x=-6$

April $16^{\text {th }}$

PArA. $4 . \mathbb{1}$

Solve:
(1.) $-9 x+9+11 x=-4$
[A] $x=\frac{5}{2}$
([B]) $x=-\frac{13}{2}$
[C] $x=-\frac{5}{2}$
[D] $x=\frac{13}{2}$
(2) $3 x=2 x+4$
([A) $x=4$
[B] $x=\frac{4}{5}$
[C] $x=-4$
[D] $x=-\frac{4}{5}$
(3) $-8 x+11+10 x+15=4$
[A] $x=11$
[B] $x=15$
[C] $x=-15$
(D]) $x=-11$
(4) $6 x-9=5 x-3$
[A, $x=6$
[B] $x=-\frac{12}{11}$
[C] $x=1$
[D] $x=-6$
(1) $-9 x)+9+(11 x)=-4 \quad$ conbineliketerns

use inverse operations
to isolate the variable.

$$
\begin{aligned}
& \frac{2 x}{2}=\frac{-13}{2} \\
& x=\frac{-13}{2}
\end{aligned}
$$

(2)

$$
\begin{array}{r}
3 x=2 x+4 \\
-2 x-2 x \\
\hline
\end{array}
$$

variables on one side and constants on the other. Use inverse operations to isolate the variable
(3) $-8 x+11+(10 x)+15=4$
$2 x+26=4 \quad$ combine liketerms then use
$-26-26$ inverse operations to isolate
$\frac{2 x}{2}=\frac{-22}{2}$ the variable.

(4) | $6 x-9=-11$ |
| :---: |
| $6 x-9=-5 x-3$ |
| $-5 x \quad x-9=-3$ |
| $x+9=+9$ |
| $y=1$ |

variables on one side and Constants on the o free. use inverse operations to isolate the variable.

Practice by Objective

8.2.2.c

PAC. 3.

1
What is the value of the expression?

$$
(9-3)^{2}-200 \div 8
$$

A -20.5
B -13
C 11
D 47

4 What is the value of the expression?

$$
13-(-10)^{2} \div\left(5^{2} \times 4\right)
$$

A -3
B 12
C 13.5
D 29

2 What is the value of the expression?

$$
27+\left(54 \div(-3)^{3}\right)
$$

A 25
B 21
C -6
D -9

5 What is the value of the expression?

$$
(9-1.2 \div 0.2)^{2} \times 5^{0}
$$

A 0
B 6
C 7.8
D 9 expression?

$$
48 \div 2+4^{2}-(6+2) \times 3
$$

A 108
B 72
C 16
D 8
6 What is the value of the expression?

$$
\left(3 \frac{1}{2}-2 \frac{1}{4}\right) \times 4+20 \div 5
$$

A 5
B 6
C 9
D 10
$\frac{\text { Name }}{\text { a }}$

Practice boy Objective use your calculator

 8.2.2.c PA, A. 3.1 order of operations1
What is the value of the expression?

$$
(9-3)^{2}-200 \div 8
$$

A -20.5
B -13
C. 11
(1) 47.

2

What is the value of the expression?

$$
27+\left(54 \div(-3)^{3}\right)
$$

(A) 25

B 21
C -6
D -9
5 What is the value of the expression?

$$
(9-1.2 \div 0.2)^{2} \times 5^{0}
$$

A 0
B 6
C 7.8
(D) 9

3 What is the value of the expression?

$$
48 \div 2+4^{2}-(6+2) \times 3
$$

A 108
B 72
(C) 16

D 8

6 What is the value of the expression?

$$
\left(3 \frac{1}{2}-2 \frac{1}{4}\right) \times 4+20 \div 5
$$

A 5
B 6
(C) 9

D 10

